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Abstract

Segmentation of fine-scale structures in natural and bio-medical images
are gaining importance with the development of high resolution electron
microscopy images. The task still remains challenging as per-pixel accu-
racy is not only the metric of concern because of the imbalance in the
dataset. In this project, a new loss function based on the Jacobi-sets are
proposed.

1 Introduction

Motivation: Main motivation for this project comes from the paper titled
“Topology-Aware Segmentation Using Discrete Morse Theory” by Hu et al.
[1]. In the above mentioned paper, authors have defined a discrete Morse the-
ory based loss function (DMT-loss) to identify correct topological structures
and teaches a neural network to learn from these structures. They computed
1D-skeleton and 2D-patches (denoted by S1(ε) and S2(ε) respectively) from like-
lihood probability outputted by a neural network with discrete Morse theory[2]
and compared with the ground truth to update the neural network parameters.

Related Work: In recent times persistent-homology-based losses were pro-
posed by Hu et al.; Clough et al. [3, 4]. These methods identify a set of critical
points of the likelihood function and the neural network (NN) to memorizes it.
However it is inefficient for the NN to remember such a sparse set of critical
points per iteration. Mosinska et al.in [5] uses pretrained filters to detect bro-
ken segments but their results are focused on 1D and cannot be generalized to
higher dimensional structures. Deep neural networks are prevalent in the area
of fine-scale structure segmentation and some notable works are [6, 7, 8, 5, 9].
Although discrete Morse theory has been used extensively to identify skeleton
structures from images [10, 11, 12] , usage of Jacobi-sets [13] along with neural
networks remains unexplored till date. In [13], Edelsbrunner et al. gave an algo-
rithm to compute Jacobi-sets for multiple Morse functions. In [14] Jacobi-sets
were used to compute combinatorial ridge-valley graphs and in [15] Bremer et
al. used them to extract and track topological features. Bhatia et al. gave an
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algorithm to simplify Jacobi-sets locally and consistently in [16]. In [17], Tierny
et al. used Jacobi-sets to compute bivariate Reeb spaces.

Contribution: We propose a new Jacobi-set based loss function. Compared
to [1], our loss function does not depend on a parameter and runs in linear
time. Furthermore, Jacobi-sets are infamous for their numerical instability. We
propose a strategy such that when used with an end-to-end learnable framework,
this instability is taken care of automatically by the learning process.

2 Background and Definitions

2.1 Background

Definition 2.1 (Jacobi-set). Consider a smooth d-Manifold (d ≥ 2) M equipped
with a Riemannian metric so that gradients are defined. Consider two Morse
functions f, g : M → R. We denote the level set of g, Mt = g−1(t), a smooth
(d−1) manifold for some t ∈ R. The restriction of f on this level set is a smooth
Morse function ft : Mt → R. The Jacobi-set J(f, g) is the set of critical points
of such level set restrictions.

J(f, g) = cl
{
x ∈M | x is a critical point of ft

}
(1)

Intuitively Jacobi-sets can be thought as locus of critical points of ft as g
varies.

Consider the gradients of f, g at a point x ∈M and t = g(x). Then ∇ft = 0
iff gradient vectors of f and g are parallel, i.e.

∇f + λ∇g = 0 or λ∇f +∇g = 0

. With this Jacobi-sets can be characterized as

J(f, g) = cl
{
x ∈M | x is a critical point off + λg or λf + g

}
(2)

for some λ ∈ R.

2.2 Jacobi-sets for piecewise linear (PL) case:

J is generally computed by tracing the critical points of 1-parameter family of
functions hλ = f + λg. As λ is varied, the critical points will move. Instead
of keeping track of the movements and the critical points, in the PL setting
we construct J as union of edges along which critical points move. Given a
simplicial complex K, and uv an edge of K, as we vary λ, critical points of hλ
will move from u to v (or vice versa). If a critical point of hλ moves along the
edge uv,the following two conditions must hold

1. hλ(u) = hλ(v)

2. Entire edge uv must be critical.
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Let λ = λuv be the value when the first condition holds. Then

hλ(u) = hλ(v)

f(u) + λuvg(u) = f(v) + λuvg(v)

λuv =
f(v)− f(u)

g(u)− g(v)
(3)

In PL setting criticality of an edge uv can be determined by the link condition.
The link condition states that an edge uv is critical iff

∑
k≥0 β̃k−1 > 0 for

the lower link of uv with β̃i is the i-th reduced betti number. As this paper
discusses only 2D examples, we will focus on the case where K is triangulation
of a 2-manifold. Then each edge is incident to exactly two triangles discarding
the boundary edges. Suppose triangles uvx and uvy is incident on the edge
uv. Then the link of edge uv is the vertices x and y. Summarizing the above
discussion, if K is a triangulation of 2-manifold, for an edge uv if its link is the
vertices x and y, then uv belongs to Jacobi-set J iff

hλuv
(x)× hλuv

(y) > 0 (4)

with λuv = f(v)−f(u)
g(u)−g(v) and hλ = f + λg. Adapting a notation used by Tierny

et al. in [17], we denote
−→
f uv =

〈
f(u), f(v)

〉
. We define duv : link(uv) → R, a

signed distance function as

duv(v
′) =

〈−→
f vv′ · −→η fuv

〉
(5)

Where v′ is the vertex in link of uv, −→η fuv
denotes a vector orthonormal to

−→
f uv

and < a · b > denotes dot-product between a and b. Then Eq 4 translates to

duv(x)× duv(y) > 0 (6)

with x and y being the link of the edge uv.

3 Method

Fig 1 shows the overview of our approach. Our loss has two terms, the binary
cross-entropy loss Lbce and the Jacobi loss, LJ . So the overall loss-function is
defined as L(ŷ, y) = Lbce(ŷ, y) + LJ(ŷ, y) where ŷ is the likelihood and y is the
ground truth.

3.1 Jacobi loss

We chose U-net as the CNN architecture to generate the likelihood ŷ. Notice
that ŷ is defined on a 2D image, i.e. a grid G ⊂ R2 with ŷ : G → R2. To
compute Jacobi sets, we compute Freudenthal triangulation of G. Notice that
this triangulation needs to be computed only once since the grid is of same
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Figure 1: Overview of our loss function

height and width across the training and test samples. Taking ŷ to be one of the
functions we compute Jacobi sets for the image. We take

⋃
uv∈J uv = {u} ∪ {v}

we form the Jacobi image and compute Euclidean distance, l2, from the ground

truth. Notice that we still need −→η fuv , a direction orthonormal to
−→
f uv. In other

applications of Jacobi-sets this direction is generally pre determined. However,
in our application we learn this direction.

3.2 Neural net architecture

The network architecture is similar to 2D U-net [6]. It consists of a contract-
ing path and an expansive path (right side). The contracting path follows the
typical architecture of a convolutional network. It consists of the repeated ap-
plication of two 3x3 convolutions (unpadded convolutions), each followed by a
rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for
downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each followed
by a ReLU. The cropping is necessary due to the loss of border pixels in every
convolution. At the final layer a 1x1 convolution is used to map each 64- com-
ponent feature vector to the desired number of classes. In total the network has
23 convolutional layers.

4 Experiments and Results

Dataset: We performed experiments on CrackTree[18] dataset. The dataset
contains 1890 images. The images have dimension of 360×640 (height x width).
Fig 2 shows a sample of training images.
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(a) Sample input image. (b) Groundtruth segmentation of (a).

Figure 2: Example images from the CrackTree dataset.

Evaluation metrics: Since per-pixel accuracy is not a valid metric we use
DICE score (also known as DICE coefficient, DICE metric). DICE score is same
as F1 score.

Training details: The U-net model was trained for 50 epochs without the
Jacobi loss and with Lbce only. Then the same model was trained for another
50 epochs with Lbce + LJ . Another U-net model was trained for 100 epochs
with just Lbce and was compared with the previous model.

Results: Fig 3 shows the result of segmented image. Table 1 shows the result

Model with Lbce Model with Lbce + LJ
DICE 0.657 0.616

Table 1: DICE score on CrackTree dataset with and without Jacobi loss.

of adding Jacobi loss on the CrackTree dataset.

5 Discussions and Conclusions

Due to time constraint extensive experiments could not be performed. We
proposed a new loss function for this segmentation task. Although discrete
Morse theory provides a robust, resilient to noise framework, Jacobi sets can
be a good alternative since it can be computed efficiently. We also proposed a
learnable framework for Jacobi set computation in this project.
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